P2P-MapReduce: Parallel data processing in dynamic Cloud environments
نویسندگان
چکیده
MapReduce is a programming model for parallel data processing widely used in Cloud computing environments. Current MapReduce implementations are based on centralized master-slave architectures that do not cope well with dynamic Cloud infrastructures, like a Cloud of clouds, in which nodes may join and leave the network at high rates. We have designed an adaptive MapReduce framework, called P2P-MapReduce, which exploits a peer-to-peer model to manage node churn, master failures, and job recovery in a decentralized but effective way, so as to provide a more reliable MapReduce middleware that can be effectively exploited in dynamic Cloud infrastructures. This paper describes the P2P-MapReduce system providing a detailed description of its basic mechanisms, a prototype implementation, and an extensive performance evaluation in different network scenarios. The performance results confirm the good fault tolerance level provided by the P2P-MapReduce framework compared to a centralized implementation of MapReduce, as well as its limited impact in terms of network overhead.
منابع مشابه
Cloud Computing Technology Algorithms Capabilities in Managing and Processing Big Data in Business Organizations: MapReduce, Hadoop, Parallel Programming
The objective of this study is to verify the importance of the capabilities of cloud computing services in managing and analyzing big data in business organizations because the rapid development in the use of information technology in general and network technology in particular, has led to the trend of many organizations to make their applications available for use via electronic platforms hos...
متن کاملAdaptive Dynamic Data Placement Algorithm for Hadoop in Heterogeneous Environments
Hadoop MapReduce framework is an important distributed processing model for large-scale data intensive applications. The current Hadoop and the existing Hadoop distributed file system’s rack-aware data placement strategy in MapReduce in the homogeneous Hadoop cluster assume that each node in a cluster has the same computing capacity and a same workload is assigned to each node. Default Hadoop d...
متن کاملChordMR: A P2P-based Job Management Scheme in Cloud
MapReduce is a programming model and an associated implementation for processing parallel data, which is widely used in Cloud computing environments. However, the traditional MapReduce system is based on a centralized master-slave structure. While, along with the increase of the number of MapReduce jobs submitted and system scale, the master node will become the bottleneck of the system. To imp...
متن کاملA P2P Framework for Developing Bioinformatics Applications in Dynamic Cloud Environments
Bioinformatics is advanced from in-house computing infrastructure to cloud computing for tackling the vast quantity of biological data. This advance enables large number of collaborative researches to share their works around the world. In view of that, retrieving biological data over the internet becomes more and more difficult because of the explosive growth and frequent changes. Various effo...
متن کاملEfficient Dynamic Resource Allocation Using Nephele in a Cloud Environment
Today, Infrastructure-as-a-Service (IaaS) cloud providers have incorporated parallel data processing framework in their clouds for performing Many-task computing (MTC) applications. Parallel data processing framework reduces time and cost in processing the substantial amount of users’ data. Nephele is a dynamic resource allocating parallel data processing framework, which is designed for dynami...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Syst. Sci.
دوره 78 شماره
صفحات -
تاریخ انتشار 2012